

<u>Chemistry Marking scheme</u> <u>Delhi - 2016</u> <u>Set – 56/1/3/D</u>

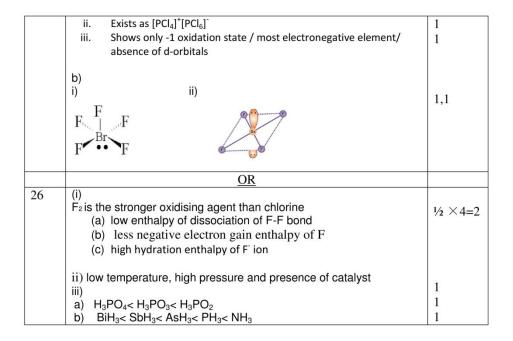
	<u>Set - 30/1/3/D</u>			
Q.No	VALUE POINTS	MARKS		
1	Ferromagnetism			
2	$CH_3CH_2CH(Cl)CH_3$; secondary halide/ 2 ⁰ carbocation is more	1/2, 1/2		
	stable			
3	NH ₃	1		
4	Like Charged particles cause repulsion/ Brownian motion/ solvation	1		
5	2,4,6-Tribromoaniline / 2,4,6-Tribromobenzenamine	1		
6	(i) $[Cr(H_2O)_5Cl]Cl_2.H_2O$	1		
	 (ii) pentaaquachloridoChromium(III) chloride monohydrate (or chloride hydrate) 	1		
	(no deduction for not writing hydrate)			
7	(i) Mercury cell	1/2		
	(ii) Fuel cell	1/2		
	(iii) Lead storage battery	1/2		
	(iv)Dry cell	1/2		
8	A-Na ₂ CrO ₄	1/2		
	$B-Na_2Cr_2O_7$	1/2		
	$C-K_2Cr_2O_7$	1/2		
	Use- strong oxidising agent / as a primary standard in	1/2		
	volumetric analysis			
	OR			
8	$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$	1		
	$Cr_2O_7^{2-}$ + 14 H ⁺ + 3 Sn ²⁺ \rightarrow 2 Cr ³⁺ + 3 Sn ⁴⁺ + 7 H ₂ O	1		

9	(i) $CH_3-CH_2-\ddot{O}-H + H' \rightarrow CH_3-CH_2-\ddot{O}-H$	1⁄2
	(ii) $CH_3CH_2 = \overset{\bigcirc}{O} + CH_3 = CH_2 = \overset{\frown}{O} + \overset{H}{H} \rightarrow CH_3CH_2 = \overset{\frown}{O} - CH_2CH_3 + H_2O$	1
	(iii) $CH_{3}CH_{3} \xrightarrow{\bullet}_{i} - CH_{3}CH_{3} \longrightarrow CH_{3}CH_{3} \xrightarrow{\bullet}_{i} - CH_{2}CH_{3} + H^{*}$	1/2
10	(i) zero order, bimolecular/ unimolecular	1/2, 1/2
	(ii) mol L ⁻¹ s ⁻¹	1
11	$\log k = \log A - E_a/2.303RT$	1/2
	$E_a / 2.303 \text{ RT} = 1.0 \times 10^4 \text{ K/ T}$	
	$E_a = 1.0 \times 10^4 \times 2.303 \times 8.314$	
	=191471.4 J/mol	1
		1000
	$t_{1/2} = 0.693 / k$	1/2
	k = 0.693/200 min	
	$= 0.0034 \text{min}^{-1}$	1

	• (i)	_
	Adsorption Absorption	
	Surface phenomena Bulk phenomena	
	The accumulation ofThe substance is uniformly	
	molecular species distributed throughout	
	at the surface rather than in the bulk of the solid	
	the bulk of a solid or liquid is essentially a bulk	
	termed adsorption. phenomenon. (any one difference)	1
	(any one difference)	_ `
	(ii) AlCl ₃ , more positive charge/Hardy-Schulze rule	$\frac{1}{2} + \frac{1}{2}$
	(iii)Sulphur	1
13	(i) In chlorobenzene, each carbon atom is sp ² hybridised /	1
	resonating structures / partial double bond character.	
	(ii) Due to +R effect in chlorobenzene/ difference in	1
	hybridization i.e. sp ² and sp ³ respectively/ -I and +R effect	
	oppose each other while -I effect is the only contributing	
	factor in cyclohexane.	
*	(iii)Due to formation of planar carbocation/ Carbon in	1
	carbocation formed is sp^2 hybridised.	
14	2×10^{24} atoms weigh = 300g	1 .
	6.022×10^{23} atoms weigh = $(300 \times 6.022 \times 10^{23})/2 \times 10^{24}$	
	= 90.3 g	
	d = z x M	
	$d = \frac{z \times M}{a^3 N_A}$	$\frac{1}{2} + \frac{1}{2}$
	103	
	$= 4 \times 90.3 / (250 \times 10^{-10} \text{ Jx} \text{ N}_0)$	/2 . /2
	$= 4x90.3/(250x10^{-10})xN_0$ =38.4 gcm ⁻³	
	$= 4x90.3/(250x10^{-10})XN_0$ =38.4 gcm ⁻³ (or any other correct method	1
	$= 4x90.3/(250x10^{-10})xN_0$ =38.4 gcm ⁻³ (or any other correct method	1
15	(or any other correct method) 1
15	$= 4x90.3/(250x10^{-10})xN_0$ =38.4 gcm ⁻³ (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns	1
15	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals) 1
15	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of) 1 1 1 1 1
÷.	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals.) 1 1 1 1 1
ž.	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I) 1 1 1 1 1
÷.	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. 	1 1 1 1 1 1 1 1
÷.	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH 	1 1 1 1 1 1
÷.	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH 	1 1 1 1 1 1 1 1
16	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH 	1 1 1 1 1 1 1 1 1
16	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH (iii) CH₃ CH₂CH₂OH (ii) Zone refining 	1 1 1 1 1 1 1 1 1 1
16	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH (iii) Cone refining (ii) Leaching / Bayer's process 	1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH (iii) CH₃CH₂CH₂OH (iii) CHaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. 	1 1 1 1 1 1 1 1 1 1
16	 (or any other correct method (i) ability of oxygen to form multiple bond/ pπ-dπ bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f⁰, f⁷ and f¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH₃OH, (CH₃)₃C-I (ii) CH₃CH₂CH₂OH (iii) CH₃CH₂CH₂OH (iii) CHaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. 	1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	(or any other correct method (i) ability of oxygen to form multiple bond/ $p\pi$ -d π bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f ⁰ , f ⁷ and f ¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH ₃ OH, (CH ₃) ₃ C-I (ii) CH ₃ CH ₂ CH ₂ OH (ii) CH ₃ CH ₂ CH ₂ OH (ii) Leaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. (i) E ⁰ _{cell} = E ⁰ _c -E ⁰ _a -	1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	(or any other correct method (i) ability of oxygen to form multiple bond/ $p\pi$ -d π bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f ⁰ , f ⁷ and f ¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH ₃ OH, (CH ₃) ₃ C-I (ii) CH ₃ CH ₂ CH ₂ OH (ii) CH ₃ CH ₂ CH ₂ OH (ii) Zone refining (ii) Leaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. (i) E ⁰ _{cell} = E ⁰ _c -E ⁰ _a =(-0.44)-(-0.74) V	1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	(or any other correct method (i) ability of oxygen to form multiple bond/ $p\pi$ -d π bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f ⁰ , f ⁷ and f ¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH ₃ OH, (CH ₃) ₃ C-I (ii) CH ₃ CH ₂ CH ₂ OH (ii) CH ₃ CH ₂ CH ₂ OH (ii) Leaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. (i) E ⁰ _{cell} = E ⁰ _c -E ⁰ _a -	1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	(or any other correct method (i) ability of oxygen to form multiple bond/ $p\pi$ -d π bond. (ii) Partially filled d orbitals / due to comparable energies of ns and (n-1) d orbitals (iii) due to relative stabilities of the f ⁰ , f ⁷ and f ¹⁴ occupancies of the 5f orbitals/ Comparable energies of 7s,6d,5f orbitals. (i) CH ₃ OH, (CH ₃) ₃ C-I (ii) CH ₃ CH ₂ CH ₂ OH (ii) CH ₃ CH ₂ CH ₂ OH (ii) Zone refining (ii) Leaching / Bayer's process (iii) Reducing agent / to form CO which acts as a reducing agent. (i) E ⁰ _{cell} = E ⁰ _c -E ⁰ _a =(-0.44)-(-0.74) V	1 1 1 1 1 1 1 1 1 1 1 1 1 1

	$E_{cell} = E_{cell}^0 - 0.059 \log [Cr^{3+}]^2$ n [Fe ³⁺] ³	1/2
	ii [ie]	1
	$F_{\mu\nu} = F^0_{\mu\nu} = 0.059 \log [0.01]^2$	
	$E_{cell} = E_{cell}^0 - 0.059 \log [0.01]^2$ 6 [0.1] ³	
	= 0.30 - (-0.059/6)	1
	=0.3098V	
19	(i) β -D glucose and β -D-galactose / glucose and galactose	16 16
	(ii) water soluble ,excreted out of the body	$\frac{1}{2}, \frac{1}{2}$
	(iii)In nucleotide, phosphoric acid/phosphate group attached to	1
	the nucleoside / structures of both nucleoside and nucleoside /	
	nucleotide= base +sugar + phosphate group, nucleoside= base	1
	+sugar.	
20	d ² sp ³ , Paramagnetic, low spin	1.1/.1/
20		$1, \frac{1}{2}, \frac{1}{2}$
		1
	en pi	1
•	(en'	
21	(i) $C_6H_5NH_2$, $C_6H_5N_2^+CI^-$, C_6H_5I	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
	(ii) CH ₃ CN, CH ₃ CH ₂ NH ₂ , CH ₃ CH ₂ NC	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
22	a. Catalyst / initiator of free radical	1
	b. Hexamethylene diamine and adipic acid / structure /	1/2, 1/2
	IUPAC name	,
	c. Buna-S <polystyrene<terylene< td=""><td>1</td></polystyrene<terylene<>	1
	OR	
22	Chain initiation steps	
22		
	$C_{H_{a}} \xrightarrow{C_{c}} O'O \xrightarrow{C_{c}} C_{c}H_{a} \xrightarrow{C_{c}} 2C_{c}H_{a} \xrightarrow{C_{c}} O \xrightarrow{O} \xrightarrow{C_{c}} 2\hat{C}_{a}H_{a}$ Berzeyl peroxide Phenyl radical	1
	C_{H_1} +CH ₂ =CH ₂ \longrightarrow C ₄ H ₄ -CH ₂ -CH ₂	
	Chain propagating step	
	$C_{4}H_{3} - CH_{2} - CH_{3} + CH_{3} = CH_{7} \longrightarrow C_{4}H_{3} - CH_{3} - CH$	
		1
	$\mathbf{C}_{\mathbf{s}}\mathbf{H}_{\mathbf{s}} + \mathbf{C}\mathbf{H}_{\mathbf{s}} - \mathbf{C}\mathbf{H}_{\mathbf{s}} + \mathbf{C}\mathbf{H}_{\mathbf{s}} - \mathbf{C}\mathbf{H}_{\mathbf{s}} + \mathbf{C}\mathbf{H}_{\mathbf{s}} - \mathbf{C}\mathbf{H}_{\mathbf{s}} + C$	1
	Chain terminating step	
	For termination of the long chain, these free radicals can combine in different ways to form polythene. One mode of termination of chain is shown as under:	
	in different ways to form polythene. One mode of termination of	1

23	(i)Aware, concerned or any other correct two values.	$\frac{1}{2} + \frac{1}{2}$
	(ii) Side effects, unknown health problems	1
	(iii) Neurologically active drugs/ stress relievers	1
	Example- valium, equanil	$\frac{1}{2} + \frac{1}{2}$
	(or any other correct two example)	
24	A -C ₆ H ₅ COCH ₃	1
	$B-C_6H_5CH_2CH_3$	1
	C-C ₆ H ₅ COOH	1



	D ,E -C ₆ H ₅ COONa , CHI ₃	1+1
	OR	
24	a)HCHO + HCHO conc MACH HCOONa +CH ₃ OH	1
	(or any other example)	
	b)CH ₃ CH=N-NHCONH ₂	1
	c) Stronger -I effect of fluorine ,stronger acid less pka / strong	1
	electron withdrawing power of fluorine.	
	d)CH ₃ CH=CHCH ₂ CHO	1
	e)Silver mirror formed on adding ammonical silver nitrate to	1
	propanal and not with propanone (or any other correct test)	

25	a) $\Delta T_{f} = i \frac{K_{f} w_{b} x1000}{K_{f} w_{b} x1000}$	1
	M _b x w _a	
		1
	$\Delta T_{f} = 3 \times (1.86 \times 1.9/95 \times 50) \times 1000$	
	= 2.23K	
	$T_{f} - \Delta T_{f} = 273.15 - 2.23 / 273 - 2.23$	1
	$T_{f} = 270.92 \text{ K or } 270.77 \text{ K}$	1
	b)	NUMBER AND ADDRESS
	i)2M glucose ; More Number of particles / less vapour pressure	$\frac{1}{2} + \frac{1}{2}$
	ii)Reverse Osmosis	1
	OR	
	a) AT = 16 m m1000	
	$\Delta T_{f} = \frac{K_{f} w_{b} \times 1000}{M_{b} \times w_{a}}$	1
		1
	$0.383 = (3.83 \times 2.56/M \times 100) \times 1000$	1
	M=256	
	$S \times x = 256$	
	$32 \times x = 256$	
	x=8	1
	b)	1
	i)Shrinks	1
	ii)swells	1

26	<u>a)</u>		
	i.	Endothermic compound / decomposition of ozone is exothermic	1
		in nature and $\Delta { extsf{G}}$ is negative / decomposition of ozone is	
		spontaneous.	

