

CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/1/F

Q.no.	Answers	Marks
1	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
2	Because of some crystallization.	1
3	Reaction (ii)	1
4	NO ₂ gas	1
5	N,N-dimethylbutanamide	1
6	i) [Co(NH ₃) ₄ Cl ₂]Cl	1
	ii) Tetraamminedichloridocobalt(III) chloride	1
7	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$	
•	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1/2
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k	1/2
	For half-life of the reaction	
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	
	$t_{1/2} = \frac{1}{k} \wedge \frac{0.693}{0.693} = 10$	1
	OR	
7		
	$R \to P$ $Rate = \frac{dR}{dt} = kR$ $or \frac{dR}{R} = -kdt$	1/2
	Integrating this equation, we get $\ln [R] = -kt + 1$ (4.8)	
	Again, I is the constant of integration and its value can be determined easily.	
	When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant.	
	Therefore, equation (4.8) can be written as	
	$\ln \left[R \right]_0 = -k \times 0 + 1$	
	$ln [R]_0 = I$	
	Substituting the value of I in equation (4.8)	
	$ln[R] = -kt + ln[R]_0 \tag{4.9}$	
	Rearranging this equation	1/2
	$\ln \frac{R}{R_0} = kt$	
	or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	
	1	

	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	
		1
8	Henry's law states that the mole fraction of gas in the solution is proportional to the partial	1
0	pressure of the gas over the solution. Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in	1/2
	blood used by sea divers or any other Solubility of gas in liquid decreases with increase in temperature.	1/2
9	$X = CH_3-CO-CH_2-CH_3$ / Butan-2-one	1
	Y= CH ₃ -CH(OH)-CH ₂ -CH ₃ / Butan-2-ol	1
10	i) ii) F	1+1
11		
	$k = 2.303 \log \frac{p_i}{2p_i - p_t}$	1
	$= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$= \frac{2.303}{300} \log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1

1 1	

12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or diagrammatic representation.	11/2
	iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl ₃ (lewis acid). (note: part ii is deleted because of printing error and mark alloted in part i and part iii)	11/2
	OR	
12	i)C ₆ H ₅ CH ₃ CrO ₃ /(CH ₃ CO) ₂ O C ₆ H ₅ CH(OCOCH ₃) ₂ H ₂ O C ₆ H ₅ CHO	
	ii)CH ₃ COOH Cl ₂ /P Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
13	$\mathbf{d} = \frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathbf{A}} \times \mathbf{a}^3}$	
	Or	
	$d = \underbrace{z \times w}_{N \times a^3}$ Where w is weight and N is no. of atoms.	1
	$d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{cm})^3}$	1
	d = 5 g cm ⁻³	1
	(or by any other correct method)	
14	i) It is a process in which both adsorption and absorption can take place simultaneously.	
	ii) It is the potential difference between the fixed layer and the diffused/ double layer	1
	of opposite charges around the colloidal particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	1

15		
	$\Delta T_f = iK_f m$	17
	For complete ionisation of Na ₂ SO ₄ i=3	1/2
	$\Delta T_f = T_f^0 - T_f = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ $\Delta T_f = 1.57$	1/2
	So, $T_f = -1.57^{\circ}C$ or 271.43K	1
16	i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power.	
	ii)Because of high interelectronic repulsion.	
17	iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F . i)A: C ₆ H ₅ CONH ₂ B: C ₆ H ₅ NH ₂ C: C ₆ H ₅ NHCOCH ₃	1x3=3 1½
	ii)A: C ₆ H ₅ NO ₂ B: C ₆ H ₅ NH ₂ C: C ₆ H ₅ -NC	11/2
18	(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2 and CH_2 = CH - CN$	1/2+1/2
	(ii) Vinyl chloride CH ₂ =CH-Cl	1/2+1/2
	(iii) Chloroprene	
	CI	1/2+1/2
	$CH_2 = C - CH = CH_2$	
19	6 CH ₂ OH 4 OH 1 OH 1 OH 1 1	1
	i) Ĥ ÔH	1
	ii) Peptide linkage / -CO-NH- linkage Water soluble-Vitamin B / C Fat soluble- Vitamin A /D /E /K	1/2+1/2

20	i) dsp ³ , Diamagnetic, low spin	1 1/2+1/2
	ii) The energy used to split degenerate d-orbitals due to the presence of ligands in a definite geometry is called crystal field splitting energy.	1
21	i)Iodine is heated with Zr or Ti to form a volatile compound which on further heating decompose to give pure Zr or Ti . or	1
	$Zr(impure) + 2I_2 \longrightarrow ZrI_4$ (volatile)	
	ZrI_4 1800K $Zr(pure) + 2I_2$	
	ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings conductivity.	1
	(iii) Role of NaCN in the extraction of Ag is to do the leaching of silver ore in the presence of air.	
	or $4Ag(s) + 8CN^{-}(aq) + 2H_2O + O_2(g)$ \longrightarrow $4[Ag(CN)_2]^{-} + 4OH^{-}$	1
22	i) CH ₂ Cl	
	ii) Br CH ₃	
		1 x 3=3
	iii) CH ₃ CH ₂ ONO	

23	(i)Caring ,dutiful, Concerned, compassionate (or any other two values)	1/2+1/2
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases.	1
	ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1/2+1/2
24	a)	
	Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	
	$\Delta_{\rm r}G^{\rm O} = -n \times F \times E^{\rm o}_{\rm Cell}$	1/2
	$\Delta_{\rm r}G^{\rm O} = -6 \text{ x } 96500 \text{ C mol}^{-1} \text{ x } 0.30\text{V}$	
	= - 173,700 J / mol or - 173.7 kJ / mol	1
	$\log Kc = \underline{n E^{o}_{Cell}}$	
	0.059	1/2
	$\log \text{ Kc} = \frac{6 \times 0.30}{0.059}$	
	$\log Kc = 30.5$	1
	b)A Because E ^o value of A shows that on coating ,A acts as anode and Fe acts as a cathode	1
	and hence A oxidises in prefence to Fe and prevent corrosion / or E ^o _{cell} is positive and hence A oxidises itself to prevent corrosion of Fe/E ^o value is more negative. (or any other correct reason)	1
	OR	

24	a) $\Lambda_{\rm m} = \frac{\kappa}{c}$ $= \frac{3.905 \times 10^{-5} \text{ S cm}^{-1}}{0.001 \text{mol L}^{-1}} \times \frac{1000 \text{cm}^3}{L}$	1/2
	$A_{\rm m} = 39.05 {\rm Scm}^2 {\rm mol}^{-1}$ $A_{\rm o} = \lambda^{\rm o} ({\rm H}^+) + \lambda^{\rm o} ({\rm CH}_3 {\rm COO}^-)$ $= (349.6 + 40.9) {\rm Scm}^2 {\rm mol}^{-1}$	1
	$ \alpha = \frac{\Lambda_{\rm m}}{\Lambda_{\rm o}} $ $ = \frac{39.05 \text{ Scm}^2 \text{mol}^{-1}}{390.5 \text{ Scm}^2 \text{mol}^{-1}} $	1/2
	$\alpha = 0.1$	1
	b)Secondary battery or rechargeable battery	1
	$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+(aq)$ \longrightarrow $2PbSO_4(s) + 2H_2O(l)$	1
25	a) i)Because of higher oxidation state (+7) of Mn. ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation state / or it has incompletely filled d-orbital in +2 oxidation state. iii)Because of comparable energies of 5f, 6d and 7s orbitals. b) 2MnO₂ + 4KOH + O₂ → 2K₂MnO₄ + 2H₂O	1 1 1
	$3MnO_4^{2-} + 4 H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$ OR	1+1
	OK .	

25		
25	 a) i)Cr, because of maximum no. of unpaired electrons cause strong metallic bonding. 	1/2 + 1/2
	ii)Mn, because it attains stable half -filled 3d ⁵ configuration in +2 oxidation state.	1/2 + 1/2
	iii)Zn, because of no unpaired electron in d-orbital. b)	1/2 + 1/2
	$2\mathrm{Na_2CrO_4} + 2\ \mathrm{H^+} \rightarrow \mathrm{Na_2Cr_2O_7} + 2\ \mathrm{Na^+} + \mathrm{H_2O}$	
	$Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$	1+1
26	a)	
	i) (CH ₃) ₃ C-I + CH ₃ -OH	1.
	i) CH ₃ -CH ₂ -C-CH ₃	1
	O O	
	ii) OH	1
	СНО	I.
	b) .i)	
	OH ONa OH NaOH (i) CO ₂ (ii) H' COOH	1
	ii). OCH ₃ OCH ₃ OCH ₃	
	+ CH ₃ COCl Anhyd. AlCl ₃ + COCH ₃ + COCH ₄	1.
	OR	

26	a). (i)	
	он он	1
	Br Br	
	Br	
	pyridine (ii) CH ₃ CH ₂ OH + CH ₃ COC l → CH ₃ CH ₂ O-COCH ₃ + HCl	
	(iii).	1
	осн ₃ он	
	John John	
	HI + CH ₃ -I	1
	+ CH ₃ -1	1
	· · · · · · · · · · · · · · · · · · ·	
	(b)(i) Warm each compound with iodine and sodium hydroxide.	
	Phenol : No yellow ppt formed	1
	Ethanol: Yellow ppt of Iodoform are formed.	
	ii)On adding lucas reagent (HCl/anhyd.ZnCl ₂) , Propan-2-ol gives white turbidity after	1
	5 minutes whereas 2-methylpropan-2-ol gives white turbidity immediately.	1
	(or any other suitable test)	
	(or any other suitable test)	