

$\underline{P}lace \ for \ \underline{R}ational \ \underline{\&} \ \underline{E}ducational \ \underline{\&} otivations!!$

CHEMISTRY MARKING SCHEME SET -56/2 Compt. July, 2015

Qu es.	Value points	Marks		
1	Emulsions are liquid – liquid colloidal systems.			
2	For example – milk, cream (or any other one correct example) Formation of stable complex by polydentate ligand.			
3	Propanal	1		
4	p-Nitroaniline < Aniline < p-Toluidine	1		
5	Frenkel defect	1		
6	 i) Due to high bond dissociation enthalpy of N ≡ N ii) Due to low bond dissociation enthalpy of F₂ than Cl₂ and strong bond formation between N and F 	1 1		
7	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1		
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1		
7	Iodine is liberated from potassium iodide : $10I^- + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5I_2$	1		
	Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S \longrightarrow 2H^+ + S^{2-}$ $5S^{2-} + 2MnO_4^- + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1		
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2		
		1		

1

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Ethene		
9	Mole fraction of a component =	1	
	Number of moles of the component		
	Total number of moles of all the components		
	ii) Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the		
	solvent. Or	1	
	Molality (m) = $\frac{\text{Moles of solute}}{\text{Moles of solute}}$		
	Moranty (III) = $\frac{1}{\text{Mass of solvent in kg}}$		
10	Zero order: mol L ⁻¹ s ⁻¹	1	
11	i) It lowers the melting point of alumina / acts as a solvent.	1	
11	ii)	1	
	Roasting Calcination	1	
	Ore is heated in a regular supply of air Heating in a limited supply or		
	absence of air. (Or with equation)		
	iii) It is a process of separation of different components of a mixture which are differently		
	adsorbed on a suitable adsorbent. OR	1	
11	$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$	6 x ½	
	(Iron ore)		
	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$		
	$CaCO_3 \rightarrow CaO + CO_2$		
	(Limestone) $CaO + SiO_2 \rightarrow CaSiO_3$		
	(Slag)		
	$FeO + CO \rightarrow Fe + CO_2$ $C + CO_2 \rightarrow 2CO$		
	Coke		
	$C + Q_2 \rightarrow CO_2$		
	FeO + $\mathbf{C} \rightarrow \mathbf{Fe}$ + \mathbf{CO} (any 6 correct equations)		
12			
	reduction simultaneously. For example –		
	$2Cu^{+}(aq) \longrightarrow Cu^{2+}(aq) + Cu(s)$		
	(Or any other correct equation)		
13	i) Hexaamminecobalt(III) chloride	1	
	ii) Tetrachlorido nickelate(II)	1	
	iii) Potassium hexacyanoferrate(III)	1	
		1	

14	i) 2-bromobutane	1
14		1
	ii) 1, 3-dibromobenzene	1
	iii) 3-choloropropene	1
15	i) CH ₂ Cl CH ₂ ONa CH ₂ OH H ⁺ i)	1
	$CH_3CH_2MgCl \xrightarrow{HCHO} CH_3-CH_2-CH_2-OH$ $CH_3CH=CH_2+ H_2O \xrightarrow{H^*} CH_3-CH-CH_3$	1
	OH	1
16	PCI ₅	1
10	i) CH₃-CH₂OH → CH₃CH₂Cl ii)	
	OH OH OH + CH ₃ Cl Anhyd. AlCl ₃ CH ₃ CH ₃	1
	1	
17	i) Peptide linkage – in proteins, ∝-amino acids are connected to each other by pe	
	bond or peptide linkage (-CONH- bond). ii) Primary structure - each polypeptide in a protein molecule having amino acids which	
	are linked with each other in a specific sequence. Denaturation - When a protein is subjected to physical change like change in temperature or chemical change like change in pH, protein loses its biological activity.	
18		
	$CH = CH_{2}$ $n CH_{2} = CH - CH = CH_{2} + CH_{2} - CH = CH - CH_{2} - CH - CH_{2}$ $1, 3-Butadiene Styrene Butadiene - styrene copolyme$	Jn

3

	$ \begin{array}{c} \text{CN} \\ \text{n CH}_2\text{=CH-CH=CH}_2 + \text{nCH}_2\text{=CH} \\ \end{array} \xrightarrow{\text{Copolymerisation}} \begin{array}{c} \text{CN} \\ \text{CH}_2\text{-CH=CH-CH}_2\text{-CH}_2\text{-CH} \\ \end{array} $	1
	1,3-Butadiene Acrylonitrile Buna-N	
19	$r = \frac{\sqrt{2}a}{4}$ (or any other correct example)	1
	$r = \frac{1.414 \times 4.077 \times 10^{-8} cm}{4}$,
	$r = 1.44 \times 10^{-8} \text{ cm}$	1
20		
	Therefore, $c_{\text{cane sugar}} = c_X$ (where c is molar concentration)	
	$\frac{W_{cane sugar}}{M_{cane sugar}} = \frac{W_X}{M_X}$	1
	$\frac{5 g}{342 g mol^{-1}} = \frac{0.877}{M_X}$	1
	$M_{\rm X} = \frac{0.877 \times 342}{5} \text{gmol}^{-1}$	
	$M_{X=}$ 59.9 or 60 gmol ⁻¹	1
21	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1
	$60 \text{ s}^{-1} = \frac{2.303}{t} \log \frac{[R]_0}{\frac{[R]_0}{100}}$	
	$t = \frac{2.303}{60 \text{s}^{-1}} \log 10$	1
	$t = \frac{2.303}{60} \text{ s}$	
	t= 0.0384 s	1
22	i) It is a process of removing the dissolved substance from a colloidal solution by means of diffusion through a semi - permeable membrane.	1
	ii) The movement of colloidal particles under an applied electric potential towards	1
	oppositely charged electrode is called electrophoresis. Colloidal particles scatter light in all directions in space. This scattering of light	
23	illuminates the path of beam in the colloidal dispersion. i) Aspartame, Saccharin (any one)	1
	ii) No	1
24	iii) Social concern, empathy, concern, social awareness (any 2)	2
24	 a) Due to relatively stable half – filled p-orbitals of group 15 elements b) i) CaF₂ + H2SO₄ →CaSO₄ + 2HF 	2
		1
	$\begin{array}{l} \mathrm{SO_2(g)} + \mathrm{Cl_2} \ (g) \rightarrow \mathrm{SO_2Cl_2}(l) \\ \mathrm{_{iii)}} \ \mathrm{2NH_4Cl} + \mathrm{Ca(OH)_2} \rightarrow \mathrm{2NH_3} + \mathrm{2H_2O} + \mathrm{CaCl_2} \end{array}$	1
	$\lim_{i \to i} 2i V I_{4} C I + Ca(O I)_{2} \rightarrow 2i V I_{3} + 2i I_{2}O + Ca C I_{2}$ OR	

24			
24	a) i)		
	F		
		1	
	Br		
	ii)		
	Xe	1	
		1	
	b) i)Due to small size of nitrogen, the lone pair of electron on nitrogen is localized/ easily	1	
	available for donation. ii)Because they need only one electron to attain stable/noble gas configuration.		
	in because they need only one electron to attain stable/noble gas configuration.		
	F		
	Xe		
		1	
	iii)		
25	a) i)		
	СНО		
		1	
	Y	1	
	CH₃		
	ii)		
	(CH ₃) ₂ C=CHCOCH ₃	1	
	b) i)Add NaHCO ₃ , benzoic acid will give brisk effervescence of CO ₂ whereas ethylbenzoate	1	
	will not. ii)Add NaOH and I_2 , acetophonone forms yellow ppt of iodoform on heating whereas		
	benzaldehyde will not.	1	
	iii)Add neutral FeCl ₃ , phenol gives violet colouration whereas benzoic acid does not.		

5

	OR (or any other correct test)	1
25	a) i)	
	CH ₃	1
	C=N-OH	
	CH₃	
	ii)	
	CH₃ II	
	C=N-NH - C-NH ₂	1
	H ²	
	b) i)	
	Zn-Hg	1
	CH₃CHO ———→ CH₃-CH₃	
	conc HCl	
	ii)	
	2 CH₃-CHO ← CH₃-CH-CH₂-CHO	
	2 CH₃-CHO ← CH₂-CHO	1
	OH	1
	iii)	
	LiAlH ₄	
	CH₃CHO — → CH₃CH₂OH	1
	CH3CH2UH	
26	E^{0} cell = $E^{0}_{Sn2+/Sn} - E^{0}_{Zn2+/Zn}$	1
	= -0.14V - (-0.76V)	
	= 0.62 V	1
	$\Delta_{\rm r}G^0 = -n \ {\rm F} \ {\rm E}^0_{\rm cell}$	1
	$= -2 \times 96500 \text{ C mol}^{-1} \times 0.62 \text{ V}$	
	$= -119660 \text{ J mol}^{-1}$	1
	$E = E^0 = 0.059 \log [Zn^{2+}]$	
	$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	$E_{\text{cell}} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	1
	$[sn^{2+\epsilon}]$ OR	
26	a) The conductivity of a solution at any given concentration is the conductance of one unit	
	volume of solution kept between two platinum electrodes with unit area of cross section	1/2
	and at a distance of unit length.	
	Molar conductivity of a solution at a given concentration is the conductance of the volume	1/2
	V of solution containing one mole of electrolyte kept between two electrodes with area of	
	cross section A and distance of unit length. Molar conductivity increases with decrease in concentration.	1
	Wiolai conductivity increases with decrease in concentration.	1

$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$	
= 0.80V - 0.77V	1/2
= 0.03V	1/2
$\Delta_r G^0 = -n F E^0_{cell}$	
= - 1 x 96500 C mol ⁻¹ x 0.03 V	1
= - 2895 J mol ⁻¹	
$\text{Log } K_c = \frac{n E_{cell}^0}{0.059}$	1/2
$Log K_c = \frac{0.039}{0.059}$	1/2
$Log K_c = 0.508$	