

|       | CHEMISTRY MARKING SCHEME<br><u>FOREIGN-2016</u><br><u>SET -56/2/3/F</u>                                                                                                                                                                  |       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Q.no. | Answers                                                                                                                                                                                                                                  | Marks |
| 1     | NO <sub>2</sub> gas                                                                                                                                                                                                                      | 1     |
| 2     | N,N-dimethylbutanamide                                                                                                                                                                                                                   | 1     |
| 3     | Like Charged particles cause repulsion/ Brownian motion/ solvation                                                                                                                                                                       | 1     |
| 4     | Because of some crystallization.                                                                                                                                                                                                         | 1     |
| 5     | Reaction (ii)                                                                                                                                                                                                                            | 1     |
| 6     | $X = CH_3-CO-CH_2-CH_3 / Butan-2-one$<br>Y= CH_3-CH(OH)-CH_2-CH_3 / Butan-2-ol                                                                                                                                                           | 1     |
| 7     | i) ii)                                                                                                                                                                                                                                   | 1+1   |
| 8     | i) [Co(NH <sub>3</sub> ) <sub>4</sub> Cl <sub>2</sub> ]Cl                                                                                                                                                                                | 1     |
|       | ii) Tetraamminedichloridocobalt(III) chloride<br>When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$                                                                                                                          | 1     |
| 9     | When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$<br>$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$                                                                                                                           | 1/2   |
|       | $= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$<br>t = 6.909/k                                                                                                                                     | 1/2   |
|       | For half-life of the reaction                                                                                                                                                                                                            |       |
|       | $t_{1/2} = 0.693/k$                                                                                                                                                                                                                      |       |
|       | $\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$                                                                                                                                                                        | 1     |
|       | OR                                                                                                                                                                                                                                       |       |
| 9     | $R \rightarrow P$ $Rate = \frac{d R}{dt} = k R$ or $\frac{d R}{R} = -kdt$                                                                                                                                                                | 1/2   |
|       | Integrating this equation, we get<br>$\ln [R] = -kt + I$ (4.8)<br>Again, I is the constant of integration and its value can be determined<br>easily.                                                                                     |       |
|       | When $t = 0$ , $\mathbb{R} = [\mathbb{R}]_o$ , where $[\mathbb{R}]_o$ is the initial concentration of the reactant.<br>Therefore, equation (4.8) can be written as<br>$\ln [\mathbb{R}]_o = -K \times 0 + I$<br>$\ln [\mathbb{R}]_o = 1$ |       |
|       | Substituting the value of I in equation (4.8)<br>$\ln[R] = -kt + \ln[R]_0$ (4.9)<br>Rearranging this equation                                                                                                                            | 1/2   |
|       | $\ln \frac{R}{R_0} = kt$<br>or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$ $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$                                                                                                                      | 1     |

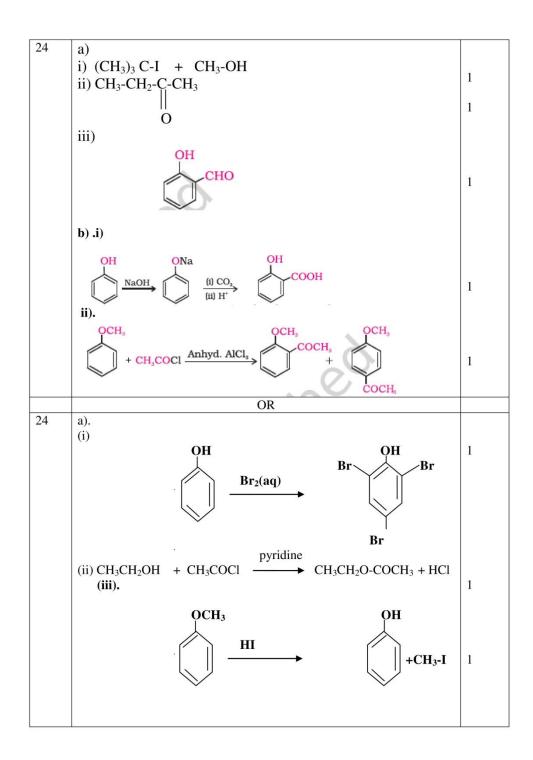
Schedule a Tutoring Session today! Call Now: **91729 66488** (S) www.premacademy.com

1



|        |                                                                                    | r       |
|--------|------------------------------------------------------------------------------------|---------|
|        |                                                                                    |         |
| 10     | Henry's law states that the mole fraction of gas in the solution is                | 1       |
| 10     |                                                                                    | 1       |
|        | proportional to the partial pressure of the gas over the solution.                 | 1/      |
|        | Applications: solubility of CO <sub>2</sub> gas in soft drinks /solubility of air  | 1/2     |
|        | diluted with helium in blood used by sea divers or any other                       |         |
|        | Solubility of gas in liquid decreases with increase in temperature.                | 1/2     |
| 11     | (i) <b>Butadiene and acrylonitrile</b>                                             | 1/2+1/2 |
|        | $CH_2 = CH - CH = CH_2$ and $CH_2 = CH - CN$                                       |         |
|        | (ii) Vinyl chloride                                                                |         |
|        | CH <sub>2</sub> =CH-Cl                                                             | 1/2+1/2 |
|        | (iii) Chloroprene                                                                  |         |
|        | Cl                                                                                 |         |
|        |                                                                                    |         |
|        | $CH_2 = C - CH = CH_2$                                                             | 1/2+1/2 |
| 12     | 6<br>Сн₂он                                                                         | 1       |
|        |                                                                                    |         |
|        |                                                                                    |         |
|        |                                                                                    |         |
|        | і) н он                                                                            |         |
|        | Destide listers / CO NUL listers                                                   | 1       |
|        | ii) Peptide linkage / -CO-NH- linkage                                              |         |
|        | iii) Water soluble-Vitamin B / C                                                   | 1/2+1/2 |
| 10     | Fat soluble- Vitamin A /D /E /K                                                    |         |
| 13     | ·> 1.3                                                                             | 1       |
|        | i) dsp <sup>3</sup> ,                                                              | 1       |
|        | Diamagnetic, low spin                                                              | 1/2+1/2 |
|        | ii) The energy used to split degenerate d-orbitals due to the                      |         |
|        | presence of ligands in a definite geometry is called crystal                       |         |
| 12 121 | field splitting energy.                                                            | 1       |
| 14     | i)Iodine is heated with Zr or Ti to form a volatile compound which on              |         |
|        | further heating decompose to give pure Zr or Ti.                                   |         |
|        | or                                                                                 | 1       |
|        |                                                                                    |         |
|        | $Zr(impure) + 2I_2 \longrightarrow ZrI_4$                                          |         |
|        | (volatile)                                                                         |         |
|        |                                                                                    |         |
|        | $ZrI_4 $ <u>1800K</u> $Zr(pure) + 2I_2$                                            |         |
|        | ii) Conselite language the sum of a languing units ( acts as a solution ( ) buings |         |
|        | ii)Cryolite lowers the m.p.of alumina mix / acts as a solvent / brings             | 1       |
|        | conductivity.                                                                      | 1       |
|        | (iii) Role of NaCN in the extraction of Ag is to do the leaching of silver         |         |
|        | ore in the presence of air.                                                        |         |
|        | or                                                                                 |         |
|        |                                                                                    |         |
|        | $4Ag(s) + 8CN'(aq) + 2H_2O + O_2(g) \qquad \qquad 4OH'$                            | 1       |




| 15 | i)                                                                                                                                                                                                                                             |         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15 | HO CH <sub>2</sub> Cl                                                                                                                                                                                                                          |         |
|    | ii)<br>Br<br>CH <sub>3</sub>                                                                                                                                                                                                                   |         |
|    | iii) CH <sub>3</sub> CH <sub>2</sub> ONO                                                                                                                                                                                                       | 1 x 3=3 |
| 16 | $k = \frac{2.303}{t} \log \frac{p_i}{2p_i p_t}$                                                                                                                                                                                                | 1       |
|    | $= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$                                                                                                                                                                                      | 1       |
|    | $=\frac{2.303}{300}\log 3$                                                                                                                                                                                                                     |         |
|    | $= \frac{2.303 \times 0.4771}{300}$                                                                                                                                                                                                            |         |
|    | $= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$                                                                                                                                                               | 1       |
| 17 | i)Because of the resonance stabilization of the conjugate base i.e enolate<br>anion or diagrammatic representation.                                                                                                                            | 11/2    |
|    | iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl <sub>3</sub> (lewis acid).                                                                                                                                               | 11⁄2    |
|    | ( note: part ii is deleted because of printing error and mark alloted in part i and part iii )                                                                                                                                                 |         |
|    | OR                                                                                                                                                                                                                                             |         |
| 17 | i)C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> <u>CrO<sub>3</sub>/(CH<sub>3</sub>CO)<sub>2</sub>O</u> C <sub>6</sub> H <sub>5</sub> CH(OCOCH <sub>3</sub> ) <sub>2</sub> <u>H<sub>2</sub>O</u> $\leftarrow$ C <sub>6</sub> H <sub>5</sub> CHO |         |
|    | ii)CH <sub>3</sub> COOH <u>Cl<sub>2</sub>/P</u> Cl-CH <sub>2</sub> -COOH                                                                                                                                                                       |         |
|    | iii)CH <sub>3</sub> COCH <sub>3</sub> Zn(Hg)/conc.HCl CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                          | 1x3=3   |
|    | ( Or by any other correct method)                                                                                                                                                                                                              |         |

3



|      |                                                                                                                                                                                                   | ,       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 18   | $d = \frac{z \times M}{N_A \times a^3}$                                                                                                                                                           | 1       |
|      |                                                                                                                                                                                                   |         |
|      | Or                                                                                                                                                                                                |         |
|      | $d = \frac{z \times w}{N \times a^3}$ Where w is weight and N is no. of atoms.                                                                                                                    |         |
|      |                                                                                                                                                                                                   |         |
|      | $d = \frac{4 \times 200 \text{ g}}{2.5 \times 10^{24} \times (400 \times 10^{-10} \text{ cm})^3}$                                                                                                 | 1       |
|      | 2.5 x10 x (+00 x 10 cm)                                                                                                                                                                           | 1       |
|      | $d = 5 \text{ g cm}^{-3}$                                                                                                                                                                         | 1       |
|      | (or by any other correct method)                                                                                                                                                                  |         |
| 19   | i) It is a process in which both adsorption and absorption can take                                                                                                                               | 1       |
|      | <ul><li>place simultaneously.</li><li>ii) It is the potential difference between the fixed layer and the</li></ul>                                                                                | 1       |
|      | diffused/ double layer of opposite charges around the                                                                                                                                             | 1       |
|      | colloidal particles.                                                                                                                                                                              |         |
|      | iii) It is the temperature above which the formation of micelles takes                                                                                                                            | 1       |
| - 20 | place.                                                                                                                                                                                            | 1/      |
| 20   | $\Delta T_{\rm f} = iK_{\rm f} m$                                                                                                                                                                 | 1/2     |
|      | For complete ionisation of $Na_2SO_4$ i=3                                                                                                                                                         | 1/2     |
|      |                                                                                                                                                                                                   |         |
|      | $\Delta T_{\rm f} = T_{\rm f}^{0} T_{\rm f} = 3 \ \text{x} \ 1.86 \ \text{K kg mol}^{-1} \text{x} \ \frac{2g}{142g \ \text{mol}^{-1}} \ \text{x} \ \frac{1000 \ \text{g kg}^{-1}}{50 \ \text{g}}$ | 2       |
|      | $142 \text{g mol}^{-1}$ 50 g                                                                                                                                                                      | 1       |
|      | $\Delta T_{\rm f} = 1.57$                                                                                                                                                                         |         |
|      | So, $T_f = -1.57^{\circ}C$ or 271.43K                                                                                                                                                             | 1       |
| 21   | i)Because of higher oxidation state (+5) / high charge to size ratio /                                                                                                                            |         |
|      | high polarizing power.                                                                                                                                                                            |         |
|      | ii)Because of high interelectronic repulsion.                                                                                                                                                     |         |
|      | iii)Because of its low bond dissociation enthalpy and high hydration                                                                                                                              | 1x3=3   |
|      | enthalpy of $F$ .                                                                                                                                                                                 | THE E   |
| 22   | i)A : $C_6H_5CONH_2$ B : $C_6H_5NH_2$ C : $C_6H_5NHCOCH_3$                                                                                                                                        | 11/2    |
|      | ii)A: $C_6H_5NO_2$ B : $C_6H_5NH_2$ C: $C_6H_5$ -NC                                                                                                                                               | 11/2    |
| 23   | (i)Caring ,dutiful, Concerned, compassionate ( or any other two values)                                                                                                                           | 1/2+1/2 |
|      | ii)Because higher doses may have harmful effects and act as poison                                                                                                                                | 1       |
|      | which cause even death.                                                                                                                                                                           | Î.      |
|      | iii)Tranquilizers are a class of chemical compounds used for treatment                                                                                                                            | 1       |
|      | of stress or even mental diseases.                                                                                                                                                                |         |
|      | ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or                                                                                                                                     | 1/2+1/2 |
|      | any other two examples)                                                                                                                                                                           |         |
|      | 1                                                                                                                                                                                                 |         |





5



| (b)(i) Warm each compound with iodine and sodium hydroxide.        | 1 |
|--------------------------------------------------------------------|---|
| Phenol : No yellow ppt formed                                      |   |
| Ethanol: Yellow ppt of Iodoform are formed.                        |   |
| ii)On adding lucas reagent ( HCl/anhyd.ZnCl2 ) , Propan-2-ol gives | 1 |
| white turbidity after 5 minutes whereas 2-methylpropan-2-ol gives  |   |
| white turbidity immediately.                                       |   |
| (or any other suitable test)                                       |   |

| 25 | a) Given $E^{o}_{Cell} = +0.30V$ ; $F = 96500C \text{ mol}^{-1}$                                                                        |      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|------|
|    | n = 6 (from the given reaction)                                                                                                         |      |
|    | $\Delta_{\rm r} {\rm G}^{\rm O} = - {\rm n} {\rm x} {\rm F} {\rm x} {\rm E}^{\rm o}_{\rm Cell}$                                         | 1/2  |
|    | $\Delta_{\rm r} {\rm G}^{\rm O} = -6 \ {\rm x} \ 96500 \ {\rm C} \ {\rm mol}^{-1} \ {\rm x} \ 0.30 {\rm V}$                             | 1    |
|    | = - 173,700 J / mol or - 173.7 kJ / mol                                                                                                 | 1    |
|    | $\log Kc = n E^{o}_{Cell}$                                                                                                              | 1/2  |
|    | 0.059                                                                                                                                   | 72   |
|    | $\log Kc = \frac{6 \times 0.30}{1000}$                                                                                                  |      |
|    | 0.059                                                                                                                                   |      |
|    | $\log \text{Kc} = 30.5$                                                                                                                 | 1    |
|    | b)A                                                                                                                                     |      |
|    | Because E <sup>o</sup> value of A shows that on coating ,A acts as anode and Fe                                                         | 1    |
|    | acts as a cathode and hence A oxidises in prefence to Fe and prevent                                                                    |      |
|    | corrosion / or $E^{o}_{cell}$ is positive and hence A oxidises itself to prevent                                                        | 1    |
|    | corrosion of Fe/E <sup>o</sup> value is more negative.                                                                                  | 1    |
|    | ( or any other correct reason)                                                                                                          |      |
| 25 | $\frac{OR}{a) \qquad \Lambda_m = \kappa}$                                                                                               | 1/2  |
| 23 | a) $\Lambda_m = \frac{\kappa}{c}$                                                                                                       | 72   |
|    | $= 3.905 \text{ x } 10^{-5} \text{ S cm}^{-1} \text{ x } 1000 \text{ cm}^{3}$                                                           |      |
|    | $= \frac{3.905 \text{ x } 10^{-5} \text{ S cm}^{-1}}{0.001 \text{ mol } \text{L}^{-1}} \text{ x } \frac{1000 \text{ cm}^{3}}{\text{L}}$ |      |
|    | $\Lambda_{\rm m} = 39.05 \ {\rm Scm}^2 {\rm mol}^{-1}$                                                                                  | 1    |
|    | $\Lambda_0 = \lambda^0(H^+) + \lambda^0(CH_3COO^-)$                                                                                     | 2000 |
|    | $= (349.6 + 40.9) \text{ Scm}^2 \text{mol}^{-1}$                                                                                        |      |
|    | $\Lambda_{\rm o} = 390.5 \ \rm Scm^2 mol^{-1}$                                                                                          |      |
|    | $\alpha = \underline{\Lambda_{m}}$                                                                                                      | 1/2  |
|    | $\Lambda_0$                                                                                                                             |      |
|    | $= \frac{39.05 \text{ Scm}^2 \text{mol}^{-1}}{200.5 \text{ Scm}^2 \text{mol}^{-1}}$                                                     |      |
|    | $390.5 \text{ Scm}^2 \text{mol}^{-1}$                                                                                                   | 1    |
|    | $\alpha = 0.1$                                                                                                                          | 1    |
|    |                                                                                                                                         |      |

6



|    | b)Secondary battery or rechargeable battery<br>$Pb(s) + PbO_2(s) + 2SO_4^{2-}(aq) + 4H^+(aq) \longrightarrow$<br>$2PbSO_4(s) + 2H_2O(l)$                                                                                                                                                                                                                                                                        | 1                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |
| 26 | a)<br>i)Because of higher oxidation state (+7) of Mn.<br>ii)Because it has one unpaired electron in 3d orbital in its +2 oxidation<br>state / or it has incompletely filled d-orbital in +2 oxidation state.<br>iii)Because of comparable energies of 5f, 6d and 7s orbitals.<br>b)<br>$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$<br>$3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$ | 1<br>1<br>1<br>1+1                                                                        |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| 26 | <ul> <li>a)</li> <li>i)Cr, because of maximum no. of unpaired electrons cause strong metallic bonding.</li> <li>ii)Mn, because it attains stable half -filled 3d<sup>5</sup> configuration in +2 oxidation state.</li> <li>iii)Zn, because of no unpaired electron in d-orbital.</li> <li>b)</li> </ul>                                                                                                         | $\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$<br>$\frac{1}{2} + \frac{1}{2}$ |
|    | $2\mathrm{Na_2CrO_4} + 2~\mathrm{H^+} \rightarrow \mathrm{Na_2Cr_2O_7} + 2~\mathrm{Na^+} + \mathrm{H_2O}$                                                                                                                                                                                                                                                                                                       |                                                                                           |
|    | $Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$                                                                                                                                                                                                                                                                                                                                                       | 1+1                                                                                       |

Schedule a Tutoring Session today! Call Now: **91729 66488** S www.premacademy.com

7